ABOUT THE RESEARCH GROUP
The Computational Nanomaterials group uses numerical methods to turn nanoscience into nanotechnology. One example is our current focus on numerical optimisation of up-converting media for use in solar cells. The materials are nano-structured with metal nanoparticles which focus the incoming light. Upconverting rare-earth atoms are placed in the focused light and will convert it from long wavelength to short wavelength. The short wavelength light can then be absorbed in a solar cell, thereby boosting its efficiency. We apply both parameter and topological optimization to find the optimized nanostructures.
High Q Cavity Induced Fluxon Bunching in Weakly Coupled Josephson Junctions, S. Madsen, N. Grønbech-Jensen, N. F. Pedersen, and P. L. Christiansen, Phys. Rev. B, 78, 174525 (2008).
Computational Methods for Electromechanical Fields in Nanostructures, D. Barettin, S. Madsen, B. Lassen, and M. Willatzen, Commu. Comput. Phys. 11, No. 3, 797-830 (2012).
Topology optimized gold nanostrips for enhanced near-infrared photon upconversion, J. Vester-Petersen, R. E. Christiansen, B. Julsgaard, P. Balling, O. Sigmund, and S. P. Madsen, Appl. Phys. Lett. 111, 133102 (2017).
Dose regularization via filtering and projection: An open-source code for optimization-based proximity-effect-correction for nanoscale lithography, E. H. Eriksen, A. Nazir, P. Balling, J. Vester-Petersen, R. E. Christiansen, O. Sigmund, S. P. Madsen, Microelectronic Engineering 199, 52-57 (2018).
A non-linear material interpolation for design of metallic nano-particles using topology optimization, R. E. Christiansen, J. Vester-Petersen, S. P. Madsen, O. Sigmund, Computer Methods in Applied Mechanics and Engineering 343, 23-39 (2019).