Alvandifar, N., Abkar, M., Mansoori, Z., Avval, M. S. & Ahmadi, G. (2011).
Turbulence modulation for gas-particle flow in vertical tube and horizontal channel using four-way Eulerian-Lagrangian approach.
International Journal of Heat and Fluid Flow,
32(4), 826-833.
https://doi.org/10.1016/j.ijheatfluidflow.2011.05.008
Rincón, M. J., Amarloo, A., Reclari, M., I.A. Yang, X.
& Abkar, M. (2023).
Progressive augmentation of Reynolds stress tensor models for secondary flow prediction by computational fluid dynamics driven surrogate optimisation.
International Journal of Heat and Fluid Flow,
104, Article 109242.
https://doi.org/10.1016/j.ijheatfluidflow.2023.109242
Rincón, M. J., Caspersen, A., Thorenfeldt Ingwersen, N., Reclari, M.
& Abkar, M. (2024).
Flow investigation of two-stand ultrasonic flow meters in a wide dynamic range by numerical and experimental methods. Flow Measurement and Instrumentation,
96, Article 102543.
https://doi.org/10.1016/j.flowmeasinst.2024.102543
D. Huang, X. L. ., Jain, N.
, Abkar, M., Kunz, R. F. & Yang, X. I. A. (2021).
Determining a priori a RANS model’s applicable range via global epistemic uncertainty quantification.
Computers & Fluids,
230, Article 105113.
https://doi.org/10.1016/j.compfluid.2021.105113
Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Article 075154.
https://doi.org/10.1063/5.0160977
Iungo, G. V., Santoni-Ortiz, C.
, Abkar, M., Porte-Agel, F., Rotea, M. A. & Leonardi, S. (2015).
Data-driven reduced order model for prediction of wind turbine wakes. In
WAKE CONFERENCE 2015 IOP PUBLISHING LTD.
https://doi.org/10.1088/1742-6596/625/1/012009
Eidi, A.
, Zehtabiyan-Rezaie, N., Chiassi, R., Yang, X. I. A.
& Abkar, M. (2022).
Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms.
Physics of Fluids,
34(8), Article 085135.
https://doi.org/10.1063/5.0100076