Jensen, A. M. D., Schoerghofer-Queiroz, A.
, Ulriksen, M. D., Tcherniak, D.
, Damkilde, L., Talasila, P., Larsen, P. G. & Abbiati, G. (2024).
Digital twin as a service for damage prognosis of offshore wind turbine foundations. I W. Desmet, B. Pluymers, D. Moens & J. del Fresno Zarza (red.),
Proceedings of ISMA 2024 - International Conference on Noise and Vibration Engineering and USD 2024 - International Conference on Uncertainty in Structural Dynamics (s. 4127-4141). KU Leuven, Departement Werktuigkunde.
Feng, H., Gomes, C., Sandberg, M., Thule, C., Lausdahl, K. & Larsen, P. G. (2021).
Developing a Physical and Digital Twin: An Example Process Model. I
Companion Proceedings - 24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021 (s. 286-295). IEEE.
https://doi.org/10.1109/MODELS-C53483.2021.00050
D. Huang, X. L. ., Jain, N.
, Abkar, M., Kunz, R. F. & Yang, X. I. A. (2021).
Determining a priori a RANS model’s applicable range via global epistemic uncertainty quantification.
Computers & Fluids,
230, Artikel 105113.
https://doi.org/10.1016/j.compfluid.2021.105113
Djeffal, S., Ghoul, A., Saadi, A., Izri, Z., Morakchi, M. R. & Wang, H. (2025).
Design optimization and simulation of a 3D printed cable-driven continuum robot using IKM-ANN and nTop software.
Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering,
239(2), 200-218.
https://doi.org/10.1177/09596518241276233
He, L., Wang, C., Zhang, M.
, Li, J., Chen, T. & Zhou, X. (2025).
Design of BCC/FCC dual-solid solution refractory high-entropy alloys through CALPHAD, machine learning and experimental methods.
npj Computational Materials,
11(1), Artikel 105.
https://doi.org/10.1038/s41524-025-01597-3
Si, G., Sun, L., Zhang, Z.
& Zhang, X. (2021).
Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom.
Micromachines,
12(4), Artikel 444.
https://doi.org/10.3390/mi12040444
Hudert, M. M., Elvebakken, M. F., Meagher, M.
, Mangliar, L., Zhang, X. & Esterle, L. (2022).
Deep learning enhanced robotic fabrication of timber-to-timber connections with densified hardwood nails. I
Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference: Innovation - Sustainability - Legacy (s. 1740-1748)
Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Artikel 075154.
https://doi.org/10.1063/5.0160977
Eidi, A.
, Zehtabiyan-Rezaie, N., Chiassi, R., Yang, X. I. A.
& Abkar, M. (2022).
Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms.
Physics of Fluids,
34(8), Artikel 085135.
https://doi.org/10.1063/5.0100076
Truong, T. T., Airao, J., Hojati, F., Ilvig, C. F., Azarhoushang, B.
, Karras, P. & Aghababaei, R. (2024).
Data-driven prediction of tool wear using Bayesian regularized artificial neural networks.
Measurement: Journal of the International Measurement Confederation,
238, Artikel 115303.
https://doi.org/10.1016/j.measurement.2024.115303
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (s. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Malekan, M., Bloch-Jensen, C. D., Zolbin, M. A., Ørskov, K. B.
, Jensen, H. M. & Aghababaei, R. (2021).
Cutting edge wear in high-speed stainless steel end milling.
International Journal of Advanced Manufacturing Technology,
114(9-10), 2911-2928.
https://doi.org/10.1007/s00170-021-07006-5
Li, J., Zhou, X., Brochu, M., Chekir, N., Sixsmith, J. J. & Zhao, Y. F. (2025).
Crystal introducing mechanism in laser wire directed energy deposition fabricated Ti6Al4V.
Progress in Additive Manufacturing,
10(2), 1231-1241.
https://doi.org/10.1007/s40964-024-00701-1
Volk, M., Yuksel, O., Baran, I., Hattel, J. H., Spangenberg, J.
& Sandberg, M. (2022).
Cost-efficient, automated, and sustainable composite profile manufacture: A review of the state of the art, innovations, and future of pultrusion technologies.
Composites Part B: Engineering,
246, Artikel 110135.
https://doi.org/10.1016/j.compositesb.2022.110135
Zinck Thellufsen, J., Lund, H., Vad Mathiesen, B., Østergaard, P. A., Sorknæs, P., Nielsen, S., Thøis Madsen, P.
& Bruun Andresen, G. (2024).
Cost and systems effects of nuclear power in carbon-neutral energy systems.
Applied Energy,
371, Artikel 123705.
https://doi.org/10.1016/j.apenergy.2024.123705
Legaard, C. M., Schranz, T., Schweiger, G., Drgona, J., Falay, B.
, Gomes, C., Iosifidis, A., Abkar, M. & Larsen, P. G. (2023).
Constructing Neural Network Based Models for Simulating Dynamical Systems.
ACM Computing Surveys,
55(11), 1-34. Artikel 236.
https://doi.org/10.1145/3567591
Li, W., Wu, S., Zhu, J.
, Zhang, L., Zheng, J., Wang, H., Qiu, Y., Xie, G. & Li, C. (2025).
Constitutive modelling of time-dependent polymer matrix composites: Incorporating a visco-hyperelastic model into the micromechanical framework.
Composite Structures,
366, Artikel 119220.
https://doi.org/10.1016/j.compstruct.2025.119220