Fanta, A. B.
, Todeschini, M., Burrows, A., Jansen, H.
, Damsgaard, C. D., Alimadadi, H. & Wagner, J. B. (2018).
Elevated temperature transmission Kikuchi diffraction in the SEM.
Materials Characterization,
139, 452-462.
Allahyarzadeh, MH., Aliofkhazraei, M., Rouhaghdam, A. S., Torabinejad, V.
, Alimadadi, H. & Ashrafi, A. (2017).
Electrodeposition mechanism and corrosion behavior of multilayer nanocrystalline nickel-tungsten alloy.
Electrochimica Acta,
258, 883-899.
Erenchun, A.
, Blanco, B., Gil-Negrete, N., Wang, B. & Kari, L. (2022).
Effect of lubrication on the mechanical behavior of magnetorheological elastomers in compression mode.
Polymer Testing,
111, Artikel 107617.
https://doi.org/10.1016/j.polymertesting.2022.107617
Zehtabiyan-Rezaie, N., Arefian, A., Kermani, M. J., Noughabi, A. K. & Abdollahzadeh, M. (2017).
Effect of flow field with converging and diverging channels on proton exchange membrane fuel cell performance.
Energy Conversion and Management,
152, 31-44.
https://doi.org/10.1016/j.enconman.2017.09.009
Budzik, M. K., Lopes Fernandes, R., Teixeira de Freitas, S.
, Heide-Jørgensen, S. & Jumel, J. (2021).
Effect of adhesive thickness on joint performance during mode I fracture testing. Abstract fra 6TH INTERNATIONAL CONFERENCE ON ADHESIVE BONDING 2021, Porto, Portugal.
Yang, X., Qiang, D., Chen, Z.
, Wang, H., Zhou, Z. & Zhang, X. (2022).
Dynamic Modeling and Digital Twin of a Harmonic Drive Based Collaborative Robot Joint. I
2022 IEEE International Conference on Robotics and Automation, ICRA 2022 (s. 4862-4868). IEEE.
https://doi.org/10.1109/ICRA46639.2022.9812458
Thevamaran, R., Griesbach, C., Yazdi, S., Ponga, M.
, Alimadadi, H., Lawal, O., Jeon, S.-J. & Thomas, E. L. (2020).
Dynamic martensitic phase transformation in single-crystal silver microcubes.
Acta Materialia,
182, 131-143.
Srinivasan, V., Song, B., Luo, J.
, Karupppasamy, S., Elara Mohan, R., Blessing, L. & Wood, K. (2023).
Do Analogies and Analogical Distance Influence Ideation Outcomes in Engineering Design? I S. Mukherjee, V. Dutt & N. Srinivasan (red.),
Applied Cognitive Science and Technology: Implications of Interactions Between Human Cognition and Technology (s. 211–230). Springer.
https://doi.org/10.1007/978-981-99-3966-4_13
Feng, H., Gomes, C., Sandberg, M., Thule, C., Lausdahl, K. & Larsen, P. G. (2021).
Developing a Physical and Digital Twin: An Example Process Model. I
Companion Proceedings - 24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021 (s. 286-295). IEEE.
https://doi.org/10.1109/MODELS-C53483.2021.00050
D. Huang, X. L. ., Jain, N.
, Abkar, M., Kunz, R. F. & Yang, X. I. A. (2021).
Determining a priori a RANS model’s applicable range via global epistemic uncertainty quantification.
Computers & Fluids,
230, Artikel 105113.
https://doi.org/10.1016/j.compfluid.2021.105113
Si, G., Sun, L., Zhang, Z.
& Zhang, X. (2021).
Design, Fabrication, and Testing of a Novel 3D 3-Fingered Electrothermal Microgripper with Multiple Degrees of Freedom.
Micromachines,
12(4), Artikel 444.
https://doi.org/10.3390/mi12040444
Hudert, M. M., Elvebakken, M. F., Meagher, M.
, Mangliar, L., Zhang, X. & Esterle, L. (2022).
Deep learning enhanced robotic fabrication of timber-to-timber connections with densified hardwood nails. I
Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference: Innovation - Sustainability - Legacy (s. 1740-1748)
Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Artikel 075154.
https://doi.org/10.1063/5.0160977
Eidi, A.
, Zehtabiyan-Rezaie, N., Chiassi, R., Yang, X. I. A.
& Abkar, M. (2022).
Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms.
Physics of Fluids,
34(8), Artikel 085135.
https://doi.org/10.1063/5.0100076
Truong, T. T., Airao, J., Hojati, F., Ilvig, C. F., Azarhoushang, B.
, Karras, P. & Aghababaei, R. (2024).
Data-driven prediction of tool wear using Bayesian regularized artificial neural networks.
Measurement: Journal of the International Measurement Confederation,
238, Artikel 115303.
https://doi.org/10.1016/j.measurement.2024.115303
Böttjer, T., Ørnskov Rønsch, G.
, Gonçalves Gomes, C. Â., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems: Proceedings of the Changeable, Agile, Reconfigurable and Virtual Production Conference and the World Mass Customization & Personalization Conference (s. 431-439). Springer.
https://www.springerprofessional.de/en/data-driven-identification-of-remaining-useful-life-for-plastic-/19816878
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2021).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. I A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (red.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (s. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49