Carlson, D. F., Akbulut, S., Rasmussen, J. F., Hestbech, C. S., Andersen, M. H.
& Melvad, C. (2023).
Compact and modular autonomous surface vehicle for water research: The Naval Operating Research Drone Assessing Climate Change (NORDACC).
HardwareX,
15, Article e00453.
https://doi.org/10.1016/j.ohx.2023.e00453
Bae, J., Won, J., Kim, T., Choi, S., Kim, H., Oh, S. H. V., Lee, G., Lee, E., Jeon, S., Kim, M., Do, H. W., Seo, D., Kim, S., Cho, Y., Kang, H., Kim, B., Choi, H., Han, J., Kim, T. ... Shim, W. (2024).
Cation-eutaxy-enabled III–V-derived van der Waals crystals as memristive semiconductors.
Nature Materials,
23(10), 1402-1410.
https://doi.org/10.1038/s41563-024-01986-x
Oakes, B. J., Zhang, H., Hatledal, L. I., Feng, H.
, Frasheri, M., Sandberg, M., Gil Arboleda, S. & Gomes, C. (2024).
Case Studies in Digital Twins. In J. Fitzgerald, C. Gomes & P. G. Larsen (Eds.),
The Engineering of Digital Twins (pp. 257-310). Springer.
https://doi.org/10.1007/978-3-031-66719-0_12
Anand, M., Panigrahi, S.
, Kofoed, M. V. W., Aghababaei, R. & Agarwala, S. (2024).
Bioinspired poly(vinyl alcohol) films with tunable adhesion and self-healing for biodegradable electronics and beyond.
Sustainable Materials and Technologies,
41, Article e01084.
https://doi.org/10.1016/j.susmat.2024.e01084
Yang, X., Zhou, Z., Sørensen, J. H., Christensen, C. B., Ünalan, M.
& Zhang, X. (2023).
Automation of SME production with a Cobot system powered by learning-based vision.
Robotics and Computer-Integrated Manufacturing,
83, Article 102564.
https://doi.org/10.1016/j.rcim.2023.102564
Ärje, J., Melvad, C., Jeppesen, M. R., Madsen, S. A., Raitoharju, J.
, Rasmussen, M. S., Iosifidis, A., Tirronen, V., Gabbouj, M., Meissner, K.
& Høye, T. T. (2020).
Automatic image-based identification and biomass estimation of invertebrates.
Methods in Ecology and Evolution,
11(8), 922-931.
https://doi.org/10.1111/2041-210X.13428
Yang, J., Stroh, A., Lee, S., Bagheri, S., Frohnapfel, B.
& Forooghi, P. (2024).
Assessment of Roughness Characterization Methods for Data-Driven Predictions.
Flow, Turbulence and Combustion,
113(2), 275-292.
https://doi.org/10.1007/s10494-024-00549-z
Colombo, M., Meng, Y., Poirier-Quinot, M., Rollet, A. L., Geeverding, A., Delcea, M., deMello, A. J. & Abou-Hassan, A. (2024).
Assessing the Effect of Magnetite Nanoflowers on Platelets in a Multiscale Approach in the Context of Thromboembolic Diseases.
ACS Applied Nano Materials,
7(17), 20085-20093.
https://doi.org/10.1021/acsanm.4c02715
Formentini, G., Martiny, T. A.
, Møller, C., Vernica, T. & Ramanujan, D. (2024).
Assessing the disassembly performance of washing machines through the design for circular disassembly methodology.
Proceedings of the Design Society ,
4, 1249-1258.
https://doi.org/10.1017/pds.2024.127
Pombo, D. V.
, Rincón, M. J., Bacher, P., Bindner, H. W., Spataru, S. V. & Sørensen, P. E. (2022).
Assessing stacked physics-informed machine learning models for co-located wind–solar power forecasting.
Sustainable Energy, Grids and Networks,
32, Article 100943.
https://doi.org/10.1016/j.segan.2022.100943
Sawant , M., Thakare, S., Rao, A. P., Feijóo Lorenzo, A. E.
& Bokde, N. (2021).
A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics.
Energies,
14(8), Article 2041.
https://doi.org/10.3390/en14082041
Böttjer, T., Tola, D., Kakavandi, F., Wewer, C. R., Ramanujan, D., Gomes, C., Larsen, P. G. & Iosifidis, A. (2023).
A review of unit level digital twin applications in the manufacturing industry.
CIRP Journal of Manufacturing Science and Technology,
45, 162-189.
https://doi.org/10.1016/j.cirpj.2023.06.011
E. S. Chen, P., Bin, Y., I. A. Yang, X., Shi, Y.
, Abkar, M. & I. Park, G. (2023).
A priori screening of data-enabled turbulence models. Physical Review Fluids,
8(12), Article 124606.
https://doi.org/10.1103/PhysRevFluids.8.124606
Sutton, M., Daniels, J.
, Masoudi, N., Gorsich, D. & Turner, C. (2024).
Approaches for exploration, analysis, and visualization of tradespace for engineering decision-making.
Proceedings of the Design Society ,
4, 3023-3032.
https://doi.org/10.1017/pds.2024.306