Gad Kjeld, J., Avendaño-Valencia, L. D.
, Brandt, A., Christensen, S. S. & Karottki Falk Andersen, J. (2023).
Towards minimal empirical uncertainty bounds of damping estimates of an offshore wind turbine in idling conditions.
Mechanical Systems and Signal Processing,
191, Article 110180.
https://doi.org/10.1016/j.ymssp.2023.110180
Eheliyagoda, D., Ramanujan, D., Veluri, B., Liu, Q. & Liu, G. (2023).
Tracing the multiregional evolution of the global dysprosium demand-supply chain.
Resources, Conservation & Recycling,
199, Article 107245.
https://doi.org/10.1016/j.resconrec.2023.107245
Lund, H., Zinck Thellufsen, J., Vad Mathiesen, B., Thøis Madsen, P., Østergaard, P. A., Nielsen, S., Sorknæs, P., Wenzel, H., Sørensen, P. B.
, Bruun Andresen, G. & Victoria, M. (2022).
16 energiforskere fra fem universiteter: Lad os få mere fakta i atomkraftdebatten: Der er ikke behov for atomkraft for at sikre stabilitet i elforsyningen. Det vil kun gøre den dyrere og samtidig forsinke den grønne omstilling, skriver en række forskere i et svar til kernefysikere, som har efterlyst mere helstøbt og åben vurdering af atomkraft i Danmark. .
Altinget.
https://www.altinget.dk/forsyning/artikel/16-energiforskere-fra-fem-universiteter-lad-os-faa-mere-fakta-i-atomkraftdebatten
Høye, T. T., Dyrmann, M., Kjær, C., Nielsen, J., Bruus, M., Mielec, C. L., Vesterdal, M. S., Bjerge, K., Madsen, S. A., Jeppesen, M. R. & Melvad, C. (2022).
Accurate image-based identification of macroinvertebrate specimens using deep learning — How much training data is needed? PeerJ,
10, Article e13837.
https://doi.org/10.7717/peerj.13837
Mahato, M., Hwang, W. J.
, Tabassian, R., Oh, S., Nguyen, V. H., Nam, S., Kim, J. S., Yoo, H., Taseer, A. K., Lee, M. J., Zhang, H., Song, T. E. & Oh, I. K. (2022).
A Dual-Responsive Magnetoactive and Electro–Ionic Soft Actuator Derived from a Nickel-Based Metal–Organic Framework.
Advanced Materials,
34(35), Article 2203613.
https://doi.org/10.1002/adma.202203613
Rysgaard, S., Bjerge, K., Boone, W., Frandsen, E., Graversen, M.
, Thomas Høye, T., Jensen, B., Johnen, G.
, Antoni Jackowicz-Korczynski, M., Taylor Kerby, J., Kortegaard, S.
, Mastepanov, M., Melvad, C., Schmidt Mikkelsen, P., Mortensen, K., Nørgaard, C.
, Poulsen, E., Riis, T., Sørensen, L. & Røjle Christensen, T. (2022).
A mobile observatory powered by sun and wind for near real time measurements of atmospheric, glacial, terrestrial, limnic and coastal oceanic conditions in remote off-grid areas.
HardwareX,
12, Article e00331.
https://doi.org/10.1016/j.ohx.2022.e00331
Ma, P., Xia, R., Wang, X.
, Zhang, X., Królczyk, G., Gardoni, P. & Li, Z. (2022).
An active control method for vibration reduction of a single-link flexible manipulator.
Journal of Low Frequency Noise Vibration and Active Control,
41(4), 1497-1506.
https://doi.org/10.1177/14613484221094982
Zhang, B., Endelt, B., Lang, L., Zhao, Y., Yan, S.
& Nielsen, K. B. (2022).
An inverse strategy to determine constitutive parameters of tubular materials for hydroforming processes.
Chinese Journal of Aeronautics,
35(6), 379-390.
https://doi.org/10.1016/j.cja.2021.11.007
Pombo, D. V.
, Rincón, M. J., Bacher, P., Bindner, H. W., Spataru, S. V. & Sørensen, P. E. (2022).
Assessing stacked physics-informed machine learning models for co-located wind–solar power forecasting.
Sustainable Energy, Grids and Networks,
32, Article 100943.
https://doi.org/10.1016/j.segan.2022.100943
Volk, M., Yuksel, O., Baran, I., Hattel, J. H., Spangenberg, J.
& Sandberg, M. (2022).
Cost-efficient, automated, and sustainable composite profile manufacture: A review of the state of the art, innovations, and future of pultrusion technologies.
Composites Part B: Engineering,
246, Article 110135.
https://doi.org/10.1016/j.compositesb.2022.110135
Böttjer, T., Ørnskov Rønsch, G.
, Gomes, C., Ramanujan, D., Iosifidis, A. & Larsen, P. G. (2022).
Data-Driven Identification of Remaining Useful Life for Plastic Injection Moulds. In A.-L. Andersen, R. Andersen, T. D. Brunoe, M. Stoettrup Schioenning Larsen, K. Nielsen, A. Napoleone & S. Kjeldgaard (Eds.),
Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems - Proceedings of the 8th Changeable, Agile, Reconfigurable and Virtual Production Conference CARV 2021 and 10th World Mass Customization and Personalization Conference MCPC 2021 (pp. 431-439). Springer.
https://doi.org/10.1007/978-3-030-90700-6_49
Eidi, A.
, Zehtabiyan-Rezaie, N., Chiassi, R., Yang, X. I. A.
& Abkar, M. (2022).
Data-driven quantification of model-form uncertainty in Reynolds-averaged simulations of wind farms.
Physics of Fluids,
34(8), Article 085135.
https://doi.org/10.1063/5.0100076
Hudert, M. M., Elvebakken, M. F., Meagher, M.
, Mangliar, L., Zhang, X. & Esterle, L. (2022).
Deep learning enhanced robotic fabrication of timber-to-timber connections with densified hardwood nails. In
Proceedings of the IASS 2022 Symposium affiliated with APCS 2022 conference: Innovation - Sustainability - Legacy (pp. 1740-1748)
Yang, X., Qiang, D., Chen, Z.
, Wang, H., Zhou, Z. & Zhang, X. (2022).
Dynamic Modeling and Digital Twin of a Harmonic Drive Based Collaborative Robot Joint. In
2022 IEEE International Conference on Robotics and Automation, ICRA 2022 (pp. 4862-4868). IEEE.
https://doi.org/10.1109/ICRA46639.2022.9812458
Erenchun, A.
, Blanco, B., Gil-Negrete, N., Wang, B. & Kari, L. (2022).
Effect of lubrication on the mechanical behavior of magnetorheological elastomers in compression mode.
Polymer Testing,
111, Article 107617.
https://doi.org/10.1016/j.polymertesting.2022.107617