Bae, J., Won, J., Kim, T., Choi, S., Kim, H., Oh, S. H. V., Lee, G., Lee, E., Jeon, S., Kim, M., Do, H. W., Seo, D., Kim, S., Cho, Y., Kang, H., Kim, B., Choi, H., Han, J., Kim, T. ... Shim, W. (2024).
Cation-eutaxy-enabled III–V-derived van der Waals crystals as memristive semiconductors.
Nature Materials,
23(10), 1402-1410.
https://doi.org/10.1038/s41563-024-01986-x
Asghari, M., Ivetich, S. D., Aslan, M. K., Aramesh, M., Melkonyan, O., Meng, Y., Xu, R.
, Colombo, M., Weiss, T., Balabanov, S., Stavrakis, S. & deMello, A. J. (2024).
Real-time viscoelastic deformability cytometry: High-throughput mechanical phenotyping of liquid and solid biopsies.
Science Advances,
10(49), Article eabj1133.
https://doi.org/10.1126/sciadv.abj1133
Arumugam, V. K., Mantzaras, J., Gantenbein, A.
, Doll, U. & Schildhauer, T. (2024).
Experimental and numerical investigation of high-pressure methane catalytic synthesis from H2 and CO2.
Proceedings of the Combustion Institute,
40(1-4), Article 105206.
https://doi.org/10.1016/j.proci.2024.105206
Ärje, J., Melvad, C., Jeppesen, M. R., Madsen, S. A., Raitoharju, J.
, Rasmussen, M. S., Iosifidis, A., Tirronen, V., Gabbouj, M., Meissner, K.
& Høye, T. T. (2020).
Automatic image-based identification and biomass estimation of invertebrates.
Methods in Ecology and Evolution,
11(8), 922-931.
https://doi.org/10.1111/2041-210X.13428
Anand, M., Panigrahi, S.
, Kofoed, M. V. W., Aghababaei, R. & Agarwala, S. (2024).
Bioinspired poly(vinyl alcohol) films with tunable adhesion and self-healing for biodegradable electronics and beyond.
Sustainable Materials and Technologies,
41, Article e01084.
https://doi.org/10.1016/j.susmat.2024.e01084
Amarloo, A., Cinnella, P.
, Iosifidis, A., Forooghi, P. & Abkar, M. (2023).
Data-driven Reynolds stress models based on the frozen treatment of Reynolds stress tensor and Reynolds force vector.
Physics of Fluids,
35(7), Article 075154.
https://doi.org/10.1063/5.0160977
Alzweighi, M., Tryding, J.
, Mansour, R., Borgqvist, E. & Kulachenko, A. (2023).
Anisotropic damage behavior in fiber-based materials: Modeling and experimental validation.
Journal of the Mechanics and Physics of Solids,
181, Article 105430.
https://doi.org/10.1016/j.jmps.2023.105430
Alzweighi, M.
, Mansour, R., Maass, A., Hirn, U. & Kulachenko, A. (2024).
Predicting moisture penetration dynamics in paper with machine learning approach.
International Journal of Solids and Structures,
288, Article 112602.
https://doi.org/10.1016/j.ijsolstr.2023.112602
Aliana, A., Chang, M., Østergaard, P. A.
, Victoria, M. & Andersen, A. N. (2022).
Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks.
Renewable Energy,
190, 699-712.
https://doi.org/10.1016/j.renene.2022.03.163
Ali, A., Muqeet, H. A., Khan, T., Hussain, A., Waseem, M.
& Niazi, K. A. K. (2023).
IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study.
Energies,
16(4), Article 1863.
https://doi.org/10.3390/en16041863
Abbiati, G., Gomes, C., Sandberg, M., Kazemi, Z., Hansen, S. T. & Larsen, P. G. (2024).
Modelling for Digital Twins. In J. Fitzgerald, C. Gomes & P. G. Larsen (Eds.),
The Engineering of Digital Twins (pp. 89-127). Springer.
https://doi.org/10.1007/978-3-031-66719-0_5